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Abstract 

 

Detecting spatial features from satellite imagery is crucial in a variety of applications, 

including automated map generation, urban planning, and geographic information systems (GIS). 

These tasks often require accurate identification and delineation of land parcels and boundaries to 

ensure the precision and usability of spatial data. This research investigates applying deep learning 

techniques to segment and classify land parcels from satellite imagery, presenting a solution that 

combines accuracy with computational efficiency to advance automated map production. 

The study explores various deep learning models and architectures, employing several 

datasets with diverse spectral band combinations, such as RGB (Red, Green, Blue) and NRG (Near 

Infrared, Red, Green), to evaluate their effectiveness in parcel segmentation. Each model was 

rigorously trained and tested to detect and delineate parcel boundaries, allowing for a 

comprehensive comparison of their performance across different configurations. This approach 

enabled the identification of key factors influencing segmentation accuracy, including the choice 

of spectral bands, model architecture, and training parameters. 

Our experiments demonstrated that certain model configurations significantly 

outperformed others, achieving a superior balance between precision and recall. Notably, a specific 

band combination was found to enhance the model’s ability to detect subtle parcel boundaries and 

minimize errors in segmentation. This configuration delivered highly accurate results, establishing 

it as the most effective setup for the given datasets and use case. 

In addition to achieving high accuracy, the study highlights the advantages of deep learning 

techniques over traditional image processing methods. While traditional approaches often struggle 

with complex spatial patterns and require extensive manual intervention, deep learning models 

exhibit the capacity to learn intricate features and adapt to varying landscape characteristics. This 

advantage makes them a reliable choice for tasks requiring high precision and scalability. 
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Introduction 

Agricultural management in Lebanon faces significant challenges due to the absence of 

comprehensive cadastral data, with approximately 40% of the territory lacking formal land 

registration. This thesis addresses this critical issue by employing advanced machine learning 

techniques to delineate agricultural parcels using multispectral high-resolution satellite imagery. 

The primary objective is to enhance the accuracy and efficiency of parcel delineation, thereby 

contributing to more effective agricultural management.  

“Land parcels are the new layer of how humans own, occupy, and use the Earth, with 

relevance to almost any geographic question that requires question that an action” (Jerry 

Paffendore). A parcel is a contiguous land with defined boundaries considered a single unit for 

ownership, management, or legal purposes. Parcels are usually delineated based on cadastral 

information, including geographic coordinates, physical boundaries (such as fences, roads, or 

natural features), and land use, ownership, or zoning attributes. The importance of having a 

boundary of agriculture plays an important role in effective agricultural management which is 

crucial for ensuring food security, sustainable land use, and economic stability, particularly in 

regions where agricultural activities play a central role in the economy. In Lebanon, agriculture 

remains a vital sector, yet its management is significantly hindered by the absence of 

comprehensive cadastral data. The lack of accurate parcel delineation data presents substantial 

challenges, impeding land ownership clarity, agricultural planning, and resource allocation. This 

approach not only aids in better land management but also enhances the efficiency of agricultural 

practices by providing precise information on parcel boundaries. They provide accurate, 

accessible, and transparent information about land parcels, facilitating decision-making processes 

and supporting sustainable development and this impacts parcel segmentation. 

The main objective is to evaluate and optimize traditional segmentation techniques for their 

effectiveness in delineating agricultural parcels, in addition to assessing the efficacy of integrating 

remote sensing with cutting-edge machine learning frameworks that incorporate innovative 

features for improved adaptability and precision. Remote sensing is the process of detecting and 

monitoring the physical characteristics of an area by measuring its reflected and emitted radiation 

at a distance. Special cameras collect remotely sensed images, which help researchers "sense" 

things about the Earth (USGS web). Satellite imagery is one of the most common types of remote 



 

 

sensing images. It involves capturing images of the Earth's surface from satellites orbiting the 

planet. Satellite imagery has revolutionized the way we view and understand our planet. It allows 

us to monitor changes in land cover, track the movement of icebergs, and even detect wildfires 

from space. With advancements in technology, satellite imagery has become more accessible and 

high-resolution, enabling us to study the Earth in unprecedented detail. Despite the widespread use 

of remote sensing studies to map parcel delineation, it is still challenging to map parcel delineation 

due to changes in the agricultural cycle or by buying and selling lands every year. Nowadays, the 

manual annotation of high-resolution satellite images via visual digitization is used to determine 

the boundary of land delineation, which is highly dependent on the competence of individuals to 

analyses parcel delineation field satellite images. However, this practice was found to be costly 

and time-consuming, hence an automated approach is needed. The advent of high-resolution 

satellite imagery and advancements in computational techniques, such as machine learning, offer 

promising solutions to overcome these challenges. By leveraging multispectral high-resolution 

images, it is possible to delineate agricultural parcels with improved accuracy, even in areas where 

formal cadastral data is unavailable. This approach not only aids in better land management but 

also enhances the efficiency of agricultural practices by providing precise information on parcel 

boundaries. This thesis aims to address the critical issue of parcel delineation in Lebanon by 

employing a comparative study of traditional and advanced machine learning techniques.  

Fit-For-Purpose Land Administration (FFPLA), a method increasingly adopted by 

organizations like UN-HABITAT and the World Bank, addresses this by utilizing modern 

technologies such as remote sensing and GPS to expedite the land registration process. FFPLA is 

designed to be flexible, affordable, and efficient, particularly in countries lacking formal cadastral 

systems. It aims to secure land ownership for farmers and promote stability, especially in 

underdeveloped regions. To support the implementation of FFPLA, the development of specialized 

algorithms that automate land parcel delineation is essential. These algorithms would streamline 

the process, ensuring accurate and timely land registration, which is critical for agricultural 

management and economic stability. 

This thesis is focused on Zahle Bekaa Valley, especially in the plain land agriculture area. 

A thorough literature review is conducted to explore existing research on the use of satellite 

imagery in agricultural monitoring, with a particular focus on land parcel segmentation methods. 



 

 

This review serves as the foundation for the research questions and hypotheses, highlighting the 

necessity of sophisticated computational approaches in the context of Lebanon's cadastral 

challenges.  

The proposed methodology involves acquiring and preprocessing a comprehensive dataset 

of multispectral high-resolution satellite images, followed by the implementation of both 

traditional computational techniques and state-of-the-art machine learning models. The 

comparative analysis of these approaches will provide valuable insights into their effectiveness 

and potential for application in regions with similar cadastral challenges. 

In summary, this research aims to contribute to the field of agricultural management in 

Lebanon by providing practical, data-driven solutions for parcel delineation, ultimately supporting 

more efficient and sustainable agricultural practices. The findings of this thesis are to explore and 

develop various deep learning models for the precise delineation of agricultural parcels using 

satellite imagery with 50cm of spatial resolution. By implementing multiple models, the study 

aims to identify and generate high-quality geospatial data that are not only spatially accurate but 

also reliable for agricultural decision-making processes. The models will be rigorously evaluated 

based on their predictive accuracy, to determine the most effective approach for parcel 

segmentation. The findings of this evaluation will support the selection of the most suitable model, 

capable of enhancing precision agriculture practices by providing accurate parcel boundaries, 

which are crucial for tasks like crop monitoring, resource allocation and land management.
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Chapter 1: Literature Review 
 

The delineation of agricultural parcels presents a significant challenge in land management, 

particularly in areas with insufficient cadastral data. Over time, various approaches have been 

developed to tackle this issue, ranging from traditional image segmentation techniques to 

contemporary machine learning algorithms. This literature review aims to critically assess these 

methods, with a particular emphasis on their relevance to the Lebanese context, where around 40% 

of the land lacks formal registration. 

Satellite imagery has emerged as a fundamental tool for automating numerous tasks such as 

map production, Geographic Information Systems (GIS), agricultural monitoring, and urban 

planning. Unlike conventional imagery, satellite data provides more structured and consistent 

spatial information, making it particularly suitable for applications like road extraction, building 

footprint detection, and land cover classification. Many of these tasks depend on semantic 

segmentation models to accurately extract valuable information from the imagery. 

The potential applications of satellite-derived data are extensive, encompassing fields such as 

urban planning, environmental monitoring, GIS, and fleet management, among others. While the 

use of a limited, labeled dataset of satellite imagery can constrain a model's ability to accurately 

identify spatial features, numerous studies have effectively utilized semantic segmentation models 

to recognize various elements, including roads, buildings, and vegetation. 

Before exploring related studies and their critical evaluation, we will define and clarify key 

concepts from remote sensing, machine learning, deep learning, computer vision, and semantic 

segmentation, focusing on their applications in agriculture and parcel delineation. 
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1.1. Remote Sensing 

1.1.1. Overview 

Remote sensing (RS) is the acquisition of information about an object or phenomenon from 

distance. This involves an instrument or a sensor mounted on a platform, such as a satellite, an 

aircraft, an UAV/UGV, or a probe. The sensor typically measures the electromagnetic radiation 

that is either reflected or emitted by the target. The type of information accessible from remote 

sensing depends on the specific properties of the instrument and its platform. These properties 

include: satellite or biography, UAV/UGV motion plan, field sensor position and orientation, 

active or passive sensing, detector array and optical lens characteristics, as well as storage 

capabilities.[7] 

The processed image is interpreted visually or electronically or digitally to extract the 

information about the illuminated target. Remote sensing systems which measure reflected energy 

are called passive sensors, which can be used only to detect energy in the presence of naturally 

occurring energy. This can take place only during the time when the sun is illuminating the earth. 

An active sensor provides its own energy source for illumination. The sensors emit radiation which 

is directed towards the target to be investigated; these sensors obtain the information regardless of 

the time of day. In order to capture the earth’s surface, the sensors must be placed in a proper 

platform. Before it was ground-based and aircrafts platforms, nowadays satellite near-polar orbits 

platform provides a great contribution to remote sensing imagery (Demir et al. ,2018). More over 

Multispectral satellite sensor provides digital raster images, that allow us to apply Digital Image 

Processing (DIP) techniques to develop thematic maps of landuse/landcover classes which are 

essential in many remote sensing applications like forestry, agriculture, environmental studies, 

weather forecasting, ocean studies, archeological studies etc. 

RS has become an indispensable tool in modern agricultural management, providing 

valuable data for monitoring and assessing crop health, land usage, and environmental conditions. 

By using satellite imagery and other airborne sensors, remote sensing enables the collection of 

large-scale spatial data without physical contact, making it ideal for observing agricultural parcels 

over time. Remote sensing technology offers critical insights into factors like vegetation indices, 

soil moisture, and land use patterns. In agricultural management, remote sensing aids in estimating 
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crop yields, monitoring water stress, and ensuring sustainable farming practices. Over the past 

decade, it has evolved to support precision agriculture, reducing the reliance on manual data 

collection by automating the analysis of large datasets (Ashraf et al., 2023) [1] 

1.1.2. Different Types of Imageries 

Satellite imagery plays a crucial role in RS, with different types of satellite sensors 

providing varied resolutions and spectral bands that can be utilized for agricultural analysis. In the 

past, moderate-resolution imagery, such as Sentinel-2 (10-meter resolution), was commonly used 

for regional-scale studies due to its accessibility and multispectral capabilities. However, higher-

resolution imagery, such as that provided by WorldView-3, PlanetScope, or the 50 cm resolution 

satellite imagery used in this thesis, has opened new avenues for detailed parcel delineation and 

crop management. 

High-resolution imagery is particularly important for precision agriculture, where the 

ability to delineate small and fragmented agricultural parcels is crucial. Studies such as García-

Pedrero et al.'s work on agglomerative segmentation for agricultural parcel delineation have shown 

that using high-resolution imagery can improve the accuracy of parcel boundary detection, which 

is a key factor in estimating subsidies and managing land resources. In the following section, we 

will delve deeper into the various types of imagery resolutions, clarifying what is meant by high-

resolution and its significance in RS applications. 

 

Figure 1: Comparison between Landsat-8, Sentinel-2 and Planet 
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1.1.3. Image Resolution and Band Combination 

In RS, several types of resolution affect the quality and applicability of satellite imagery for 

agricultural analysis. Understanding the nuances of each type is crucial for selecting the 

appropriate data for tasks such as parcel delineation, crop monitoring, and yield estimation. These 

include spatial, temporal, spectral, and radiometric resolutions: 

● Spatial Resolution refers to the size of the smallest object that can be detected by the 

sensor, typically measured in meters or centimeters. High spatial resolution imagery, such 

as the 50 cm imagery used in this thesis, allows for the detection of fine details, making it 

ideal for identifying small, fragmented agricultural parcels and intricate field patterns. The 

finer the spatial resolution, the more precise the delineation of boundaries and monitoring 

of crop health.[12] 

● Temporal Resolution defines the frequency at which a satellite revisits the same location 

on Earth. For agricultural applications, high temporal resolution is essential for tracking 

changes over time, such as crop growth, phenology, or detecting early signs of stress or 

disease. Satellites like Sentinel-2 offer a revisit time of 5 days, while commercial satellites 

such as PlanetScope provide near-daily observations, allowing for frequent monitoring of 

crop conditions.[12] 

● Spectral Resolution indicates the number and width of spectral bands captured by the 

sensor. Multispectral imagery typically includes visible bands (red, green, blue) and 

additional bands like near-infrared (NIR), which are critical for agricultural analysis. NIR 

is particularly useful for calculating vegetation indices such as NDVI, which provides 

insights into plant health, biomass, and water stress. Some satellites, such as WorldView-

3, offer even higher spectral resolution with more specialized bands. 
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● Radiometric Resolution refers to the sensor's ability to distinguish between different 

levels of brightness or reflectance. This is measured in bits, with higher radiometric 

resolution providing more detailed information about the intensity of light reflected from 

the surface. In agriculture, higher radiometric resolution helps in distinguishing subtle 

differences in vegetation health, soil moisture, and other key factors. 

Combining these resolutions allows for more precise monitoring of agricultural land. For 

example, using high spatial resolution imagery with multiple spectral bands enables accurate 

delineation of crop boundaries while simultaneously providing valuable insights into crop health 

through spectral analysis. High temporal resolution ensures that farmers and decision-makers can 

continuously monitor their fields throughout the growing season, responding to changes in near 

real-time. 

 

  

Images Description 

Multispectral  A multispectral image consists of several bands of data. 

The bands in the multi-spectral image are less than 30. 

This depends on the application and it is always less than 30 bands 

Super-spectral  Contemporary satellite sensors are skilled, concerning the capturing of 

images at several higher wavelength bands. 

For instance, numerous satellites are composed of thirty-six spectral 

bands, managing the region's wavelength ranges from the near-infrared, 

visible, and shortwave infrared to the thermal infrared. 

The band bandwidth is restricted, allowing exact spectral aspects of the 

targets to be acquired via the sensor. 

Hyperspectral  The hyperspectral image has hundreds or more adjacent spectral bands 

with a three-dimensional image cube. 

The compression of dimensions is utilized in hyperspectral image 

examination for decreasing data volume and redundancy. 

Table 1: Various Remote Sensing Images Spectral Resolutions 
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1.2. Geographic Information System 

1.2.1. Overview 

A Geographic Information System (GIS) is a powerful tool that enables the collection, 

management, analysis, and visualization of spatial data. By integrating data from various sources, 

including remote sensing, GIS supports the mapping and monitoring of land use, crop health, and 

other agricultural variables. GIS has revolutionized agricultural management, allowing for the 

efficient allocation of resources, optimized irrigation strategies, and precision farming practices. 

The spatial data layers in GIS can include information on soil properties, crop types, and water 

availability, providing farmers and decision-makers with the tools to make informed decisions. 

1.2.2. Practical Use of GIS in Agriculture 

GIS is widely used in agriculture for applications such as mapping field boundaries, 

monitoring crop health, and managing irrigation systems. By combining remote sensing data with 

GIS, it is possible to create detailed maps that provide insights into soil conditions, crop yield 

potential, and pest infestations. For example, farmers can use GIS to visualize crop health 

variations across a field and apply targeted interventions, such as localized fertilization or 

irrigation adjustments. 

Moreover, GIS is instrumental in the delineation of agricultural parcels, allowing for the 

accurate mapping of field boundaries, which is essential for tasks like land tenure and subsidy 

allocation. Recent advancements in GIS technology, including integration with machine learning 

algorithms, have enhanced its ability to analyze large datasets and provide real-time updates to 

farmers and policymakers. 

1.3. Traditional ways of segmentation 

Before the rise of machine learning and deep learning algorithms, traditional image 

segmentation methods were widely used in remote sensing and agricultural applications. Image 

segmentation originally started from Digital Image Processing coupled with optimization 

algorithms. These primitive algorithms made use of methods like region growing and snake’s 

algorithm where they set up initial regions and the algorithm compared pixel values to gain an idea 

of the segment map.[13] They primarily relied on pixel-based approaches and manual techniques 

to delineate boundaries between different land parcels or agricultural fields.  
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Figure 2: Image and its segmentation mask 

Although they provided a foundation for early segmentation work, these techniques faced 

limitations in handling complex, heterogeneous landscapes, especially in fragmented agricultural 

settings. Algorithms that took a global view of the input image came much later on with the 

following methods: 

● Thresholding, one of the simplest segmentation techniques, involves selecting a range of 

pixel values to differentiate between regions in an image. In agricultural applications, this 

technique could be used to separate crops from background areas such as soil or water by 

selecting thresholds based on pixel intensity or vegetation indices. However, thresholding 

is often insufficient for complex images with varying lighting conditions, plant growth 

stages, or diverse vegetation types. [12] 

● Edge Detection methods aim to identify the boundaries of objects by detecting changes in 

pixel intensity. Techniques such as the Canny or Sobel edge detectors were commonly 

applied to detect the edges of fields, roads, or other infrastructure in satellite images. In 

agricultural parcel delineation, edge detection helped identify field boundaries, but it often 

struggled with noisy data and intraclass variability. Additionally, it required careful 

parameter tuning and manual intervention to refine the results. 

● Region-based methods, such as region-growing algorithms, group adjacent pixels based 

on similarity in color or texture to form larger segments. This method works well when the 

objects of interest (e.g., fields or plots) are relatively uniform in appearance. However, in 

agricultural landscapes where parcels can vary significantly in size, shape, and crop type, 

region-based methods can over-segment the image, producing too many small regions that 

do not correspond to actual fields. 
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● Watershed algorithm treats an image as a topographic surface, where pixel intensities 

represent elevation. Its "floods" the image from low-intensity areas to high-intensity areas, 

identifying ridgelines that correspond to object boundaries. While the watershed algorithm 

can successfully segment distinct objects, it is highly sensitive to noise and may produce 

an excessive number of regions, especially in agricultural landscapes where interparcel 

variability is high. 

Traditional segmentation methods, while foundational, faced several limitations when applied 

to agricultural imagery: 

● Sensitivity to noise: Many traditional methods struggle with variations in lighting, shadow, 

and crop growth, leading to inaccurate boundaries. 

● Over-segmentation: These methods often break up large fields into smaller, irrelevant 

segments due to variability within parcels. 

● Manual intervention: Most traditional approaches require significant manual tuning and 

post-processing to achieve acceptable results, which is time-consuming and subjective. 

These limitations highlighted the need for more advanced techniques that could handle 

complex, high-resolution imagery more efficiently and accurately. This paved the way for the 

introduction of machine learning and, later, deep learning models, which could automate and 

enhance the segmentation process with greater precision. 
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1.4. Machine learning for image analysis 

1.4.1. Overview 

              Machine learning is a subset of artificial intelligence (AI) that enables computers 

to learn from data and improve their performance on a specific task without being explicitly 

programmed. Unlike traditional programming, where rules are hardcoded, machine learning 

algorithms identify patterns and make decisions or predictions based on the data they're trained 

on. These algorithms leverage statistical patterns and inference to discover underlying 

relationships within data and enhance their accuracy over time as they are exposed to more 

information. The goal of machine learning is to empower computers to learn from experience and 

make reliable and accurate predictions or decisions. 

Geospatial applications require specialized tools to collect, process, and present 

geographical data. These tools are invaluable for urban planning, environmental monitoring, 

resource management, and other fields. Their primary advantage lies in providing valuable insights 

for decision-making and resource allocation, contributing to sustainable societal development. 

Spatial data refers to information tied to specific locations on Earth, such as satellite imagery, 

maps, and geospatial data. Machine learning can revolutionize spatial data detection from satellite 

imagery by automating the identification and analysis of patterns.  

This includes tasks like land cover classification, land use change detection, and 

monitoring natural disasters or environmental shifts. By feeding vast amounts of satellite imagery 

to machine learning algorithms, these algorithms can learn to recognize patterns and features 

within the images. This capability can be used to develop predictive models that identify areas at 

risk of natural disasters or environmental hazards, monitor ecosystem health, and support urban 

planning. 

1.4.2. Supervised and Unsupervised learning 

CLASSIFICATION METHODS  

There are several approaches and methods that are associated with satellite image 

classification. But most widely satellite images are classified into two main categories as shown 
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in the Figure 3 i.e. Pixel-based as well as Object-based. The pixel-based techniques are further 

divided into unsupervised and supervised techniques. A brief about various classification methods 

are tabulated in the Table 2.[10] 

 

 

Figure 3: Satellite image classification techniques 

 

Methods 

 

Description 

 

Pixel-based 

classification  

 

Pixel-based classifications are based on the grey value of pixels and for the 

classification purpose only spectral information is used.  

These are considered as the least unit that depicts some image.  

This technique utilizes the statistics of reflectance for particular pixels.  

It assembles pixels to express land cover features.  

The land coverage has to be forested, metropolitan, agricultural and another 

features variety.  

The classification of the pixel is further categorized into unsupervised as well 

as supervised classification  
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Unsupervised  

Classification  

In this, pixels are integrated according to the reflectance properties.  

These groups are individually called as ‘Clusters’.  

The analyst classifies the varied clusters to produce and the bands to utilize.  

The analyst recognizes the clusters with the classes of land coverage classes.  

Later, analyst allocates significant labels to the clusters and delivers properly 

satellite image.  

It is frequently the case in which several clusters stand for a distinct land cover 

class.  

The analyst integrates the clusters into a land cover category.  

This classification method is usually employed while no sample locations exist.  

K-means and ISODATA are the techniques used for unsupervised 

classification of the satellite images  

 

Supervised 

Classification  

 

In the Supervised classification, an input is required from the analyst.  

The input of the analysts is termed as ‘training set’.  

The sample of training is considered to be an important aspect of the methods 

of supervised classification and the accuracy of these methods vastly on the 

samples employed for the purpose of training.  

The classification is based on the spectral signatures in the training set.  

Each class is demonstrated on the basis of what it is similar to the most in the 

sets of training.  

Foremost classifiers for supervised classification are Minimum-distance, 

parallelepiped and maximum likelihood.  

The algorithm primarily separates the pixels from each other based on the 

training samples that denote a site on the ground.  

Object-Based 

Classification  

 

It is different from pixel-based classification approach as it works on the group 

of pixels instead of direct pixels.  

In Object-Based image classification, some image is interpreted not only for 

single pixel but is also valid in significant image objects and their common 

relationships.  
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Object-based information extraction is relies upon spectrum character, 

geometry as well as structure evidence.  

This method offers actually innovative data and can simply accessible.  

Object-Based Classification has two main stages:  

i. Image Segmentation to generate a segmented image  

ii. Classification of the segmented image.  

 

Table 2: Classification Methods 

 

• Supervised Classification: 

The supervised classification is the essential tool used for extracting quantitative 

information from remotely sensed image data. Using this method, the analyst has available 

sufficient known pixels to generate representative parameters for each class of interest. 

This step is called training. Once trained, the classifier is then used to attach labels to all 

the image pixels according to the trained parameters. The quality of a supervised classification 

depends on the quality of the training sites, The most commonly used supervised classification is 

maximum likelihood classification.[26] 

 

• Unsupervised Classification: 

Pixels are grouped based on the reflectance properties of pixels. These groupings are called 

clusters. The user identifies the number of clusters and bands to be generated. With this 

information, the image classification tool generates clusters. There are different image clustering 

algorithms such as K-means and Expectation Maximization. The unsupervised classification 

technique is commonly used when no sample sites exist. 
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Criteria  

 

Categories  

 

Characteristics  

 

Classifiers examples  

 

Usage of training 

samples  

 

Supervised  

 

Providing land cover 

classes.  

Appropriate reference 

data is given and can 

be utilized as training 

samples.  

The signatures 

produced are utilized 

for training the 

classifiers for 

classifying the 

spectral data in the 

thematic map.  

 

More likelihood  

Less distance  

The classifier of the 

decision tree  

 

Un-supervised  

 

The algorithm of 

clustering is utilized 

for portioning the 

spectral image into 

different spectral 

classes on the basis of 

statistical data from 

the image.  

There is no usage of 

prior classes 

definition.  

It is the responsibility 

of the analyst to label 

and merge the spectral 

ISODATA  

K-mean clustering 

algorithm  
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classes in desired 

classes.  

 

 

Utilization of 

different parameters 

like Mean 

Vector/Covariance 

matrix 

Parametric classifiers The assumption of the 

Gaussian distribution. 

The generation of 

parameters from 

training samples.  

The noisy results are 

used when the 

landscape is complex.  

It is tough to combine 

the spatial, contextual 

and ancillary data into 

the classification 

process. 

 

 

More Likelihood  

LDA (Linear 

Discriminant Analysis  

 

Non-Parametric 

classifiers  

 

The data is not 

assumed for the 

requirement.  

It doesn’t need 

statistical parameters 

for calculating the 

class separation and is 

appropriate for 

integration of non-

ANN (Artificial 

Neural Network)  

Evidential reasoning  

SVM  

Decision tree classifier  

Expert System  
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remote sensing data in 

the classification 

process.  

 

Pixel information 

type  

 

Per-pixel classifiers  

 

Signature is 

developed by 

traditional classifiers 

by integrating the 

training set spectra of 

the pixels via feature.  

The signature has the 

contribution of each 

material within the 

pixels of the training 

sets without 

combined pixel 

problems.  

 

Classifiers like more 

likelihood  

Less distance  

ANN  

SVM  

Decision tree  

 

Sub-pixel classifiers The spectral 

value for the pixel is 

taken as linear/ non-

linear with the 

integration . 

Fuzzy set classifiers. 

Spectral mixture 

analysis  

Sub pixel classifiers  

 

The output is specific 

for land cover class  

 

Hard classification  

 

Every pixel should be 

allocated to the 

unique class  

 

More likelihood  

Less distance  

 

The estimation of the 

area may result in 

errors from data of 

coarse spatial 

ANN  

SVM  

Decision-tree  
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resolution because of 

the problem of mixed 

pixels.  

 

Soft classification A similarity degree is 

provided for every 

class. 

The classifiers of fuzzy 

set. 

It gives more 

information and more 

precise results 

The analysis of 

spectral mixture  

Sub-pixel classifiers.  

 

Table 3: Image Classification Method Taxonomy 

 

1.4.3. Application in Agriculture 

            Semantic segmentation has become a transformative tool in agriculture by enabling 

more precise and data-driven decision-making processes that enhance both productivity and 

sustainability. One of its primary applications is in precision agriculture, where it allows for 

detailed monitoring of crop growth and health across vast agricultural fields. By leveraging high-

resolution satellite or drone images, semantic segmentation models can differentiate between crop 

types and stages of growth, helping farmers make informed decisions about irrigation, fertilization, 

and harvesting schedules. For example, crops in different growth stages can be identified and 

segmented, allowing targeted interventions that optimize inputs like water and nutrients based on 

the plant’s current needs. 

Beyond monitoring, targeted weed and pest management is another crucial area where 

segmentation excels. Weeds compete with crops for nutrients, light, and water, significantly 

impacting crop yield. Traditional weed management techniques often involve spraying herbicides 

uniformly across fields, which can be wasteful and harmful to the environment. Semantic 

segmentation offers a solution by accurately distinguishing weeds from crops, allowing for more 

precise herbicide application, reducing the amount of chemicals used, and lowering costs. This 
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precision can extend to pest detection, where early signs of infestation can be spotted and treated 

efficiently, further protecting crop yields. 

Another important benefit of semantic segmentation is in yield prediction. By using 

historical data and current imagery, segmentation models can identify patterns in plant growth and 

health, which can be linked to expected yields. This data-driven approach provides more accurate 

predictions than traditional methods, allowing farmers to anticipate production levels and plan 

their resources and logistics accordingly. For example, areas with underperforming crops can be 

identified early, enabling farmers to apply corrective measures before significant losses occur. 

In terms of resource management, segmentation helps optimize irrigation practices. By 

analyzing moisture levels across different zones in a field, semantic segmentation enables precise 

water allocation. This prevents over-irrigation in certain areas while ensuring that under-watered 

regions receive adequate attention, promoting better water conservation. Similarly, soil health 

assessment benefits from this technology by enabling the identification of soil conditions that 

might impact crop growth, such as nutrient deficiencies, compaction, or erosion. Farmers can then 

take corrective actions, such as applying fertilizers or adjusting their planting strategies to improve 

soil conditions. 

Moreover, semantic segmentation is instrumental in disease detection, an area where early 

intervention is critical. Many plant diseases manifest as subtle changes in leaf color or texture, 

which can be difficult to detect with the naked eye. Segmentation models, particularly when 

combined with multispectral or hyperspectral imaging, can identify these early signs of disease at 

the pixel level, allowing for rapid intervention before the disease spreads widely. This capability 

not only saves crops but also reduces the need for extensive pesticide use, promoting more 

sustainable agricultural practices. 

In the realm of automation, segmentation supports the development of robotic and drone 

technologies used for tasks like automated harvesting and precision spraying. By accurately 

segmenting crops, roads, and other features in the field, these systems can operate autonomously 

with minimal human intervention. For instance, drones equipped with semantic segmentation 

algorithms can apply pesticides or fertilizers only to the areas that need them, reducing waste and 

enhancing operational efficiency. 
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Finally, segmentation aids in land-use planning and crop rotation, allowing farmers to 

delineate specific parcels of land and classify them according to their use, whether for active crop 

production, fallow periods, or infrastructure like roads and irrigation systems. This helps optimize 

land management by ensuring that different areas of the farm are used effectively, contributing to 

long-term soil health and productivity. The accurate mapping of land parcels also supports the 

effective rotation of crops, which is essential for maintaining soil fertility and preventing pest 

build-up. 

Semantic segmentation in agriculture not only improves the precision and sustainability of 

farming operations but also empowers farmers with actionable insights to optimize their use of 

resources. By reducing waste, enhancing crop health, and promoting early detection of potential 

problems, this technology plays a pivotal role in advancing modern agricultural practices and 

ensuring food security. 

 

 

Figure 4:  Some applications of Deep learning in agriculture use. 
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1.5. Deep Learning 

1.5.1. Overview 

         Deep learning, a machine learning technique inspired by the human brain, statistics, 

and applied mathematics, has gained significant popularity and practicality in recent years. 

Advances in computer hardware, larger datasets, and training techniques for deeper networks have 

fueled its growth. While offering great potential, deep learning also presents challenges and 

opportunities for further development. 

As a contemporary supervised learning method, deep learning provides a powerful 

framework. By incorporating more layers and units within a layer, deep networks can represent 

increasingly complex functions. This approach excels at tasks involving mapping input vectors to 

output vectors, which humans can often perform effortlessly. However, deep learning requires 

extensive models and labeled training data. Complex tasks that cannot be easily described as 

vector-to-vector mappings or require substantial human reasoning remain beyond its current 

capabilities. 

Remote sensing is one application of deep learning in spatial data analysis. Deep learning 

algorithms can analyze satellite imagery to identify and classify various features on Earth's surface, 

such as land cover types, vegetation density, and urban areas. This information enables monitoring 

environmental changes, such as deforestation or urbanization, and informs decision-making in 

fields like urban planning, agriculture, and environmental conservation.[16] 

While AI is a broad field, machine learning is a specific application that allows machines 

to learn from data without explicit programming. Machine learning often employs simpler methods 

like decision trees or linear regression to extract knowledge from data, whereas deep learning 

utilizes more advanced methods found in artificial neural networks. 

Deep learning requires less human intervention, as it can automatically extract features 

from a dataset. In contrast, simpler machine learning techniques often necessitate manual feature 

identification and classifier selection by engineers. Deep learning can learn from its own errors, 

while machine learning typically requires human intervention. Deep learning also demands 
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significantly more data and computational power than machine learning. While machine learning 

can often be performed on servers with CPUs, deep learning frequently requires more powerful 

chips like GPUs. 

1.5.2. Computer Vision 

           Computer Vision is a field of artificial intelligence that enables computer systems 

to extract information from images or videos, by using digital images from cameras, videos, or 

other sensors. It aims to emulate human vision capabilities, allowing computers to process and 

analyze visual information in a manner similar to the human brain. 

1. Early Beginnings (1960s-1970s): 

Computer vision as a formal discipline began in the 1960s and 1970s, with early work 

focusing on basic image processing and pattern recognition. The initial research was primarily 

theoretical and aimed at understanding the fundamental problems of extracting meaningful 

information from images. Notable early milestones included edge detection: techniques like the 

Sobel and Canny edge detectors were developed to identify boundaries within images and object 

Recognition: Early algorithms focused on identifying simple shapes and patterns.[4] 

2. Growth and Development (1980s-1990s): 

The 1980s and 1990s saw significant advancements in computer vision due to increased 

computational power and more sophisticated algorithms. Key developments included: 

• Feature Extraction: Techniques for detecting and describing features in images, such as 

corners and textures, became more refined. 

• Machine Learning: The introduction of machine learning methods provided new 

approaches for training systems to recognize objects and patterns. 

• 3D Vision: Research expanded to include 3D modeling and reconstruction from 2D 

images, enabling more complex analyses of visual data. 

3. Modern Era (2000s-Present): 

The 2000s marked a new era of rapid progress in computer vision, driven by advancements in 

deep learning and neural networks. Major factors contributing to this progress include: 
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• Deep Learning: The development and application of convolutional neural networks 

(CNNs) revolutionized image classification and object detection, achieving state-of-the-art 

performance on various benchmarks. 

• Big Data and Computing Power: The availability of large datasets and powerful GPUs 

enabled training more complex models, leading to breakthroughs in tasks such as facial 

recognition and autonomous driving. 

• Integration with Other Technologies: Computer vision systems began to integrate with 

other AI technologies, such as natural language processing and robotics, creating more 

sophisticated and versatile applications. 

There is different application of computer vision like Image Classification, Object Detection, 

Image Segmentation, Face Recognition, Motion Tracking and Augmented Reality (AR). 

1.5.3. Semantic Segmentation 

As opposed to image classification, in which an entire image is classified according to a 

label, image segmentation involves detecting and classifying individual objects within the image. 

Additionally, segmentation differs from object detection in that it works at the pixel level to 

determine the contours of objects within an image. 

 Semantic segmentation is a task for partitioning an image into segments to be able to detect 

objects from the images by assigning a semantic label to each pixel of an image. It is used to 

identify the boundaries of objects in images [2]. 

Deep learning has exhibited remarkable accuracy in computer vision tasks and holds 

tremendous potential for efficiently processing vast amounts of earth observation satellite image 

data in automated workflows. [18]. 

The field of computer vision has been a thriving research area for deep learning 

applications, primarily due to the inherent complexity of vision, which humans and animals 

effortlessly perform but poses significant challenges for computers [20]. Computer vision is a 

highly expensive discipline that encompasses diverse image-processing techniques and a multitude 

of applications. Its scope spans from emulating human visual capabilities, like facial recognition, 
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to pioneering novel visual abilities. Common benchmark tasks for evaluating deep learning 

algorithms in computer vision include optical character recognition and object recognition. [26]. 

One of the most challenges in the history of computer vision is Semantic Segmentation 

because it requires the algorithm to not only detect objects in an image but also to precisely 

segment them into their individual parts. Unlike object detection, where the goal is to identify the 

location of an object in an image, semantic segmentation requires pixel-level labeling of each 

object in the image. Furthermore, the need for high precision and accuracy in semantic 

segmentation makes it particularly challenging. Even small errors in the segmentation of an object 

can have significant consequences in downstream applications, such as autonomous driving, where 

a misclassified object could result in a collision. 

Image segmentation is the process of partitioning an image into multiple segments or 

regions to simplify its analysis. The goal is to segment the image into regions that are meaningful 

and easier to analyze. Each segment typically corresponds to distinct objects or areas of interest 

within the image. This process helps in understanding the image content more effectively, as it 

breaks down complex images into simpler, more manageable parts. 

Also, there are different type of segmentation: 

1. Semantic Segmentation that assigns a class label to every pixel in the image, grouping 

pixels that belong to the same object or class into the same segment the aim is to identify 

objects within an image, but it does not differentiate between different instances of the 

same object class and it can be used in a street scene, semantic segmentation would label 

all pixels belonging to cars as "car", all pixels belonging to pedestrians as "pedestrian", 

without distinguishing between individual cars or pedestrians. 

2. Instance Segmentation goes a step further by not only classifying pixels into categories 

but also distinguishing between different instances of the same object class. It provides 

more detailed information by identifying and segmenting each object instance separately 

and it used in a crowded scene with multiple people, instance segmentation would label 

each person individually, creating distinct segments for each individual, even if they are of 

the same class (e.g., all labeled as "person"). 
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3. Panoptic Segmentation combines elements of both semantic and instance segmentation. 

It provides segmentation at the object level, including both class labels and instance 

differentiation. This type of segmentation provides a comprehensive understanding of the 

image by segmenting objects while also recognizing their instances it can be used in a 

photo with several overlapping objects like various fruits in a bowl, panoptic segmentation 

would identify and segment each fruit separately while also classifying them correctly. 

Image segmentation is a fundamental aspect of computer vision with diverse techniques and 

applications. By breaking down images into meaningful segments, it enables more detailed and 

accurate analysis of visual information. As technology advances, particularly with the rise of deep 

learning, segmentation methods continue to improve, expanding their capabilities and applications 

across various domains. 

  



Literature Review  27 

 

 

1.6 Related Work 

The segmentation of agricultural parcels and crop monitoring through remote sensing has seen 

significant advancements with the advent of deep learning models. Traditional approaches like 

thresholding and edge detection have paved the way for machine learning and deep learning 

methods that can handle complex agricultural landscapes with greater precision. One of the most 

notable works in this domain is [12], where a machine learning approach was used to automate the 

delineation of agricultural parcels. This study introduced a methodology based on agglomerative 

segmentation, using super pixels as the foundational unit for image segmentation. The results 

showed significant improvement in delineating fragmented agricultural parcels from high-

resolution satellite imagery. Additionally, there have been several works on the integration of deep 

learning with remote sensing data to monitor crop health and field boundaries.  

In this section, we compare several notable studies that employ different deep learning 

architectures, datasets, and techniques for agricultural segmentation. The objective is to assess the 

effectiveness of these models, highlight their strengths and limitations, and illustrate how they 

have contributed to the evolving landscape of remote sensing applications in agriculture. By 

evaluating these works, we can better understand the unique contributions of each model, 

particularly focusing on the U-Net architecture, which has become one of the most widely used 

models in the field.  

Despite the advancements, challenges remain in accurately delineating parcels in areas with 

high spatial heterogeneity, where deep learning models must be adapted to local conditions and 

available data. Nonetheless, the general trend in the literature supports the conclusion that U-Net 

and other deep learning models are highly effective for agricultural image segmentation and are 

becoming the standard in precision agriculture applications. 

Several studies have explored deep learning models for agricultural segmentation, crop 

classification, and field boundary delineation. Each approach utilizes different methodologies, 

datasets, and evaluation metrics, highlighting the strengths and challenges of applying machine 

learning and deep learning techniques to remote sensing imagery. The comparison of these models 

illustrates the diversity of approaches to agricultural segmentation, each tailored to specific data 

types and problem domains. 
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● U-Net Model for Agricultural Plot Delineation: 

The U-Net architecture is one of the most widely used models for agricultural plot 

segmentation due to its efficiency in semantic segmentation tasks. In [12], García-Pedrero 

et al. (2019) utilized a U-Net-based approach to automatically delineate agricultural parcels 

from high-resolution orthophotos. Their model outperformed traditional edge-detection-

based methods, such as the gPb-UCM algorithm, by significantly reducing boundary 

displacement errors (BDE). The U-Net model’s encoder-decoder architecture allowed it to 

capture both global and local features, crucial for accurately delineating agricultural 

boundaries in fragmented landscapes. 

 

Figure 5: Result for different models. 
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The study also introduced the use of the Land Parcel Identification System (LPIS) 

data to train the U-Net model. The LPIS data provided labeled ground truth for the 

delineation task, improving the model's performance in identifying the correct boundaries. 

By comparing their U-Net-based method with gPb-UCM, the authors showed that the 

CNN-based model achieved higher accuracy, especially in heterogeneous landscapes 

where traditional methods failed. 

• Farm Parcel Delineation Using Spatio-temporal Convolutional Networks: 

The main purpose of this project was to make boundary for farm parcels instead of 

using ‘theodolites, total stations, and GPS’ by applying an AI model using deep learning 

methods. 

In recent years, deep learning has become very popular in computer vision tasks 

due to its incredible success, so for this purpose they use a pixel classification method using 

U-net architecture to apply such model, the use a sentinel 2 image with 3 bands RGB for 

agriculture area in France (2017). 

 

Figure 6 : images and predicted tiles for parcels segmentation. 
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In particular, the trained variants of the U-Net model on the Sentinel-2 images given the 

corresponding area/boundary masks. They showed that the proposed Spatio-temporal U-Net 

achieves 83% Dice score. 

• Extraction of Parcel Boundary from UAV Images Using Deep Learning Techniques: 

The article presents a deep learning-based method for extracting cadastral parcel boundaries 

from (unmanned aerial vehicle) UAV images, aiming to simplify and automate the traditionally 

labor-intensive and time-consuming process of boundary delineation. Using a U-Net-based CNN 

architecture, they successfully developed a model that generates accurate parcel boundaries with 

minimal human intervention. The model was trained on a dataset prepared from UAV images and 

corresponding vector boundaries, achieving satisfactory results in predicting parcel boundaries. 

However, the authors acknowledge the need for further improvements, particularly to handle 

varied data sources and resolutions, and suggest exploring additional methods such as data 

augmentation, GANs, and automation of data preparation for even more robust results. This 

approach has promising applications for ongoing cadastral boundary updates, potentially 

transforming fieldwork by providing efficient and automated boundary delineation.  

 

Figure 7:images and labels tiles for parcels segmentation. 
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Conclusion 

U-Net is a convolutional neural network that was developed for image segmentation. The 

network is based on a fully convolutional neural network whose architecture was modified and 

extended to work with fewer training images and to yield more precise segmentation, as many 

projects and related works use this type of deep learning model U-Net seems to be a strong choice 

for pixel classification. 

Parcel segmentation requires accurately delineating parcel boundaries, which can be 

complex and irregular. U-Net’s skip connections allow it to capture high-resolution, fine-grained 

details, making it well-suited to identifying the often subtle boundaries of parcels in imagery also 

parcels in imagery can vary significantly in shape and size, from small, irregular patches to large 

blocks. U-Net’s encoder-decoder structure, combined with skip connections, allows it to capture 

both large contextual features and fine details, making it well-suited for this variability in parcel 

characteristics. Parcel segmentation often relies on remote sensing or satellite data, which may 

include multiple spectral bands (like RGB, and near-infrared). U-Net has been shown to perform 

well with multi-channel inputs, allowing it to learn from various spectral features that enhance 

parcel detection. 

Overall, U-Net’s ability to capture detailed boundaries, handle diverse parcel 

characteristics, and work effectively with multi-spectral imagery makes it an excellent choice for 

precise and reliable parcel segmentation. Also besides using u-net architecture, there are different 

backbones that can be used, backbone is a pre-trained convolutional neural network (CNN) that 

serves as the feature extraction layer for various tasks, like object detection, classification, or 

segmentation. It forms the core architecture that learns to identify and extract important features 

from images, such as edges, textures, shapes, and patterns, which later help in distinguishing 

objects or regions in an image. 

In the context of a U-Net model for semantic segmentation, the backbone provides a strong 

foundation for recognizing spatial features across different regions of the image. The backbone 

serves as the encoder portion, which is responsible for learning and extracting important features 

from the input image. Selecting an appropriate backbone for U-Net can significantly impact the 

model's performance, efficiency, and ability to generalize.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Image_segmentation
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Chapter 2: Methodology 

This chapter outlines the methodology used for developing a deep learning model to delineate 

agricultural parcels using satellite imagery. As shown in the following flowchart in figure 3, the 

methodology is divided into several key steps: 

1. Data acquisition: Collect relevant satellite imagery data for area of interest from different 

source and it depend purpose or accuracy needed to build such model.  

2. Data preparation: Conduct necessary preprocessing, such as cloud masking, image 

enhancement, and radiometric correction, georeferencing, orthorectification. 

3. Data labeling: refers to the process of annotating data with specific tags or classifications 

to teach a model what different objects or regions represent. 

4. Data training: It’s a process for teaching the AI model to recognize patterns and make 

predictions based on labeled data. 

5. Data evaluation: evaluate and measure the performance of the trained model to ensure its 

reliability. 

6. Model integration: Embedding the trained model into a practical application or platform 

for use.  

 

Figure 8 : Methodology flowchart 

In the subsequent sections, each of these phases is examined in depth to provide a 

comprehensive understanding of the methodologies employed. The following sections delve into 

the specific processes of all phases highlighting their significance in developing an effective deep 

learning model for agricultural parcel delineation. 
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Data Collection and Preparation: 

In studies focused on agricultural monitoring and parcel delineation, high-resolution satellite 

imagery is essential for capturing detailed land features. Satellite imagery provides data at different 

spatial and spectral resolutions, depending on the satellite and sensor used, and typically undergoes 

preprocessing to enhance its quality and usability. Common preprocessing steps include 

georeferencing to align the imagery with a specific coordinate system, orthorectification to correct 

geometric distortions due to terrain, radiometric correction to adjust pixel intensity for more 

accurate reflectance values, and contrast stretching to improve the visual quality of the images.  

These steps are especially important when multiple images or temporal data are used, 

ensuring spatial consistency and enhancing feature detection capabilities. 

For this study, we focused on the Zahle - Bekaa region as our study area, selected due to 

its significant agricultural activities. We utilized imagery from the WorldView-4 satellite, known 

for its very high-resolution capabilities, which are widely used by commercial, governmental, and 

international organizations.  

 

 

Figure 9: Study area map. 
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The WorldView-4 imagery has a 

spatial resolution of 0.5 meters and includes 

four spectral bands: Near-Infrared (N), Red 

(R), Green (G), and Blue (B), with an 8-bit 

unsigned depth for each pixel, providing 

detailed color information essential for 

distinguishing agricultural features. The 

data is projected in the UTM WGS 84 Zone 

36N coordinate system and was delivered 

in GeoTIFF format, already orthorectified 

and cloud-free, ensuring high spatial 

accuracy and eliminating the need for 

further geometric adjustments. 

The imagery utilized in this research was annotated as part of a collaborative project with 

the National Council for Scientific Research in Lebanon (CNRS-L). Since its establishment in 

1962, CNRS-L is serving the scientific community in Lebanon covering all scientific disciplines. 

Its main objective is to encourage scientific research and support human resources development 

along the general scientific policies adopted by the government. CNRS-L is committed to keep the 

scientific community in Lebanon connected with advances achieved worldwide, at the same time 

dedicate its resources to meet local development objectives.  

As a result, the imagery was immediately ready for use in our workflow without additional 

preprocessing. This enabled us to initiate the labeling process directly within ArcGIS Pro, where 

training polygons representing agricultural parcels were manually delineated. 

Figure 10: Raster information for satellite 

image (Metadata) 
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Labeling is a crucial step in the workflow, as the model learns to identify features based on the 

labeled training data. Accurate labeling enables the model to distinguish between parcel and non-

parcel areas, ensuring that the model produces reliable and precise segmented maps. In other 

words, well-labeled data is essential for the model to generate meaningful and accurate results. 

For this study, labeling was performed using ArcGIS Pro 3.3. We utilized the Edit Tool to 

manually delineate agricultural parcels for training data in parcel segmentation. In the Zahle - 

Bekaa study area, approximately 750 agricultural parcels were labeled, covering a total area of 

around 16,000 m². These parcels exhibit a wide range of colors, shapes, and sizes, reflecting the 

diversity of crop types and parcel boundaries. Each parcel polygon was meticulously drawn to 

represent ground truth boundaries, based on visual cues such as color variations in the land and 

contextual features (e.g., roads, water canals, buildings, rivers, and walls). This detailed labeling 

serves as the foundation for training the model, enabling it to recognize and accurately delineate 

agricultural parcels. 

Figure 11: RGB combination bands Figure 12: NRG combination bands 
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Upon completing the labeling phase, the labeled 

parcels were exported using the Export Training Data for 

Deep Learning tool in ArcGIS Pro. This tool extracts 

imagery and corresponding labels from the GIS 

environment and formats them into datasets compatible 

with popular deep learning frameworks. The export 

process generated three distinct datasets, each featuring 

different band combinations to test their effectiveness in 

model training. These cases were: 

• Case 1: RGB band combination 

• Case 2: NRG band combination 

• Case 3: NRGB band combination 

 

 

For each case, the tool produced a total 

of 2,325 image-mask pairs, with each image 

and mask tile having a resolution of 256x256 

pixels and a stride of 128 pixels. These datasets 

provide a robust basis for evaluating the 

models’ performance across various spectral 

inputs. 

 

 

In this project, a total of 15 experiments were conducted using the U-Net model, each with 

a different backbone architecture, including ResNet-34, ResNet-50, Inception-ResNet, and 

EfficientNet-B4. These experiments were designed to evaluate the impact of various backbone 

architectures on model performance, allowing us to identify the most effective configuration for 

agricultural parcel segmentation. The model training and evaluation processes were implemented 

using Jupyter Notebook, with TensorFlow and Keras as the primary deep learning frameworks. 

Figure 14: Different data sets. 

Figure 13: Export Training Data 

for Deep   learning tool. 
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Custom Python code was developed to train the model on each dataset variant, facilitating a 

structured comparison of model performance across different band combinations and architectural 

choices. 

In the following sections, each aspect of the code and implementation strategy will be 

discussed in detail, covering the data preparation, model configuration, training processes, and 

evaluation metrics used to determine the optimal model setup for this task. 
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2.1 Model implementation 

2.1.1 Data Augmentation techniques 

Data augmentation is technique used in machine learning and computer vision to 

artificially expand the size of a training dataset by creating modified versions of existing data. This 

process helps improve the generalizability and performance of a model, especially when the 

available dataset is limited.  

Data augmentation is a way we can reduce overfitting on models, where we increase the 

amount of training data using information only in our training data. The field of data augmentation 

is not new, and in fact, various data augmentation techniques have been applied to specific 

problems. The main techniques fall under the category of data warping, which is an approach 

which seeks to directly augment the input data to the model in data space.[28] 

Many deep learning frameworks, such as PyTorch, Keras, and TensorFlow provide 

functions for augmenting data, principally image datasets. In image-based tasks, data 

augmentation typically involves applying various transformations to images to create new 

samples. Common data augmentation techniques include: rotation, Flipping, Scaling and 

Cropping, Brightness, Contrast, and Color Adjustments, Adding Noise. 

 

Figure 15: Augmentation types. 
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In this project, data augmentation plays a vital role in enhancing the robustness and 

performance of the model, particularly given the variations in color, shape, and size among 

agricultural parcels. By applying a range of transformations, we can artificially expand the training 

dataset, making the model more adaptable to diverse conditions and reducing the risk of 

overfitting. For our implementation, we used the Keras Image Data Generator class to perform 

data augmentation. 

 

Figure 16: Augmentation code using different types. 

This configuration applies several transformations: 

• Horizontal and Vertical Flipping: Randomly flips images along both axes, introducing 

variety in the orientation of parcels. 

• Rotation: Rotates images by up to 90 degrees, helping the model recognize parcels 

regardless of their alignment. 

• Zoom: Randomly zooms into images by up to 20%, allowing the model to handle 

variability in parcel sizes. 

• Width and Height Shifts: Shifts images by up to 20% along the width and height, 

simulating positional variations. 

• Shear Transformation: Applies a shear transformation, creating slight angular distortions 

that mimic real-world changes in parcel shape. 

• Fill Mode: When parts of the image are shifted or rotated beyond the original boundaries, 

the fill_mode='nearest' setting fills these regions with the nearest pixel values to preserve 

continuity. 



Methodology  41 

 

 

2.1.2 U-Net Architecture for Semantic Segmentation 

Olaf Ronneberger and his team introduced U-Net in 2015 as a new approach to image 

segmentation, particularly for medical images. It outperformed the traditional sliding window 

method by using fewer images and data augmentation. 

The sliding window technique, while effective for localization, has two main limitations: 

it creates a lot of redundant information due to overlapping patches, and the training process is 

slow. These issues make it impractical for many tasks, U-Net addresses these problems by 

providing a more efficient and effective way to segment images. 

The U-Net model is a well-known architecture in deep learning for semantic segmentation 

tasks, particularly effective in medical imaging and remote sensing applications. Developed 

initially for biomedical image segmentation, U-Net has become popular in tasks where precise 

delineation of objects or regions is needed, such as parcel detection in satellite imagery.  

U-Net Architecture gets its name from its architecture. The “U” shaped model comprises 

convolutional layers and two networks. First is the encoder, which is followed by the decoder. 

With the U-Net, we can solve the above two questions of segmentation: “what” and “where.[3] 

The architecture of U-Net is characterized by its encoder-decoder structure: 

• Encoder (Contracting Path): This part resembles a typical convolutional network, 

progressively downsampling the input image through convolutional layers and pooling. As 

the encoder compresses the spatial dimensions, it captures high-level contextual 

information. 

• Decoder (Expanding Path): The decoder upsamples the compressed features back to the 

original image dimensions, gradually recovering spatial details through a series of 

transposed convolutions. 

• Skip Connections: One of U-Net's key innovations is the use of skip connections between 

corresponding layers in the encoder and decoder. These connections help retain fine-

grained details by transferring high-resolution features from the contracting path to the 

expanding path, which improves the model’s ability to accurately localize objects. 
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Figure 17: U-Net architecture. 

 

2.1.3 Importance of Backbones in U-Net and Backbone Selection 

In the context of deep learning, a backbone is a pre-trained convolutional neural network 

(CNN) that serves as a feature extractor in larger architectures like U-Net. By using a pre-trained 

backbone, we leverage its ability to detect basic patterns (e.g., edges, textures) and more complex 

features, significantly improving the segmentation model's performance, especially when data is 

limited. 

For this project, we experimented with multiple backbones to optimize U-Net’s 

performance for agricultural parcel segmentation, each has unique characteristics: 

• ResNet-34 and ResNet-50: Known for their simplicity and efficiency, ResNet models 

introduce skip connections within each block, which help prevent the vanishing gradient 

problem in deep networks. ResNet backbones capture hierarchical features effectively, 

making them well-suited for tasks requiring high-level abstractions. Pre-trained on 
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ImageNet, these backbones have 34 and 50 layers, respectively, with ResNet-50 being 

deeper and capturing more complex features. 

• Inception-ResNet: Combines the Inception architecture’s multi-scale feature extraction 

with ResNet’s residual connections, enabling it to capture patterns at various scales and 

achieve a good balance between accuracy and computational efficiency. This hybrid model 

incorporates both Inception modules and residual connections, making it adept at learning 

multi-scale features. 

• EfficientNet-B4: Developed by Google, EfficientNet uses a compound scaling technique 

that optimally balances network depth, width, and resolution. This backbone achieves high 

performance with fewer parameters, making it effective for complex datasets with limited 

computational resources. EfficientNet-B4 is part of a series of models that trade off depth, 

width, and resolution for optimal accuracy. The B4 variant is moderate in size, balancing 

between computational cost and feature richness. 

• VGG16: Although simpler and more computationally intensive than others, VGG16 is 

effective at capturing deep features and is still widely used due to its straightforward 

architecture. A 16-layer network that is simpler but highly effective at hierarchical feature 

extraction, VGG16 remains useful in cases where interpretability and simplicity are 

prioritized. 

These backbones were chosen because they offer a diverse set of properties, allowing us to explore 

various trade-offs between computational complexity and feature representation capacity. By 

testing different backbones, we evaluated how each one impacts U-Net’s ability to accurately 

segment agricultural parcels based on different image features. 

2.1.4 Data Splitting 

In machine learning, dividing the dataset into training, validation, and test sets is a 

foundational practice that underpins model development, ensuring that the model’s performance 

is both robust and generalizable. This segmentation serves multiple purposes, each integral to the 

development of a model that not only learns from the data provided but also generalizes effectively 

to unseen data. 
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Figure 18: Data splitting. 

The training set, typically comprising the largest portion of the data (in this case, 70%), is 

solely used for learning the underlying patterns and relationships within the data. During this 

phase, the model adjusts its internal parameters through optimization techniques to reduce error 

on the training data. However, solely optimizing on this subset can lead to a phenomenon known 

as overfitting, where the model becomes overly attuned to the specific characteristics of the 

training data, at the expense of its ability to perform well on new, unseen data. Overfitting results 

in a model that may exhibit high accuracy during training but performs poorly in real-world 

applications where data can differ in subtle ways. 

To counteract overfitting and promote generalization, a validation set, representing 15% of 

the data, is introduced. The validation set serves as an independent dataset that the model has not 

encountered during training, and its role is to monitor the model’s performance during training. 

By evaluating the model on this held-out set, it becomes possible to detect overfitting early and 

make adjustments. For instance, if the model performs well on the training set but poorly on the 

validation set, it signals that the model may be too complex and has memorized training specifics 

rather than general patterns. Hyperparameter tuning—adjusting model parameters such as the 

learning rate, regularization strength, or network architecture—relies heavily on feedback from the 

validation set to identify configurations that improve model performance while avoiding 

overfitting. 
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Finally, the test set, which also constitutes 15% of the dataset, plays a distinct and crucial 

role in assessing the model’s generalization capability. Unlike the training and validation sets, 

which inform model building and adjustment, the test set remains untouched until the final 

evaluation phase. This dataset mimics real-world conditions where the model will encounter 

completely new data. The use of an isolated test set provides an unbiased evaluation of the model's 

ability to generalize to unseen data. Since the model and hyperparameters have not been adjusted 

based on the test set, its results represent a fair and realistic measure of how the model is expected 

to perform in a production environment. 

Thus, the 70-15-15 split ratio strikes an essential balance. It offers a sufficient amount of 

data for training, which allows the model to learn and generalize effectively. Meanwhile, the 

validation and test sets provide reliable benchmarks for performance monitoring and final 

evaluation, respectively, ensuring that the model performs well across multiple phases of 

assessment. This balanced approach not only safeguards the model against overfitting but also 

instills confidence in its predictive performance when applied to real-world data, a critical factor 

in the successful deployment of machine learning models. 

2.1.5 Model Implementation 

The U-Net model code is an AI-based pipeline for semantic segmentation, specifically 

designed to classify pixels in images, such as parcel detection in geographic images. It is organized 

into functions that handle various stages of the workflow, from setting up the environment, 

preparing data, defining the model, training, and evaluating, to visualizing results. The 

implementation of our U-Net model was carried out using the TensorFlow and Keras libraries, 

which offer robust tools for building and training deep learning models. We organized our code 

into modular scripts that handle different stages of the segmentation workflow, including data 

preparation, model building, training, and evaluation, each contributing to an efficient and 

reproducible training pipeline. 

To begin, we set up the necessary environment by importing the required libraries and 

setting a deterministic seed value to ensure that our experiments are reproducible. By fixing the 

random seed across TensorFlow, Python, and NumPy, we could control sources of randomness in 

training, which is essential in deep learning to achieve consistent results across different runs. 
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Data preparation is a critical step in our pipeline. In this project, satellite images of 

agricultural parcels and their corresponding segmentation masks were used as input data. These 

images were loaded and preprocessed through custom data preparation functions, which handle 

both three-band RGB images and four-band images (RGB + Infrared). Using Keras’s 

ImageDataGenerator, we augmented the training data with transformations like rotations, flips, 

and scaling to enhance the dataset's diversity. This augmentation reduces overfitting by exposing 

the model to varied perspectives of the same data, thus improving its robustness. The data was 

then split into 70% for training, 15% for validation, and 15% for testing, a common practice that 

ensures the model can generalize well to new, unseen data. 

The core of the implementation lies in building the U-Net model with different backbones. 

The U-Net architecture was defined in a way that allows flexible integration of various pretrained 

CNN backbones as its encoder. These backbones—ResNet-34, ResNet-50, Inception-ResNet, 

EfficientNet-B4, and VGG16—were selected for their strong feature extraction capabilities, 

providing a range of options to explore different trade-offs between model complexity and feature 

representation. Each backbone was initialized with pretrained weights on ImageNet to leverage 

transfer learning, enabling the model to converge faster and achieve better performance with a 

smaller dataset. The model was compiled using the Adam optimizer for its adaptive learning rate, 

along with categorical crossentropy as the loss function, which is well-suited for multi-class 

segmentation tasks. Metrics like accuracy and Mean IoU (Intersection over Union) were 

specified to monitor segmentation performance, with Mean IoU being particularly relevant as it 

evaluates the overlap between predicted and true segmentation masks. 

Training the model was conducted using the augmented training set, with early stopping 

and learning rate reduction callbacks implemented to prevent overfitting and optimize training 

efficiency. The early stopping callback monitored validation loss and halted training if the model 

stopped improving, while the ReduceLROnPlateau callback dynamically reduced the learning 

rate when validation performance plateaued, helping the model escape suboptimal local minima. 

For each backbone, we trained the U-Net model and compared their performances based on 

validation metrics. This iterative process allowed us to identify which backbone offered the best 

balance between computational efficiency and segmentation accuracy. 
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In summary, our implementation process involved a comprehensive pipeline from data loading 

and preprocessing to model training and evaluation. By incorporating different backbones, using 

effective training strategies, and evaluating performance through both metrics and visualizations, 

we aimed to build a robust U-Net model capable of accurate parcel segmentation in satellite 

imagery. 

 

  



Methodology  48 

 

 

2.2 Training and Evaluation 

After training, the model was evaluated on the test set, providing a final assessment of its 

generalization capability to assess the performance of the proposed segmentation model through a 

series of classification metrics derived from the confusion matrix. Evaluation metrics such as F1 

Score, Precision, Recall, and Mean-IoU were calculated by comparing the model’s predictions 

against the true segmentation masks. To complement the quantitative evaluation, we visualized 

the model's predictions on a sample of test images, comparing the predicted masks with the true 

masks to qualitatively assess the segmentation quality. These visualizations provided insights into 

the model's strengths and areas for improvement, highlighting where it performed well and where 

adjustments might be necessary. 

 

Figure 19 : show image, mask and predicted tiles. 

 

The confusion matrix provides a comprehensive overview of the model's prediction accuracy 

by showing the number of true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN). These values are essential for assessing the model's ability to differentiate between 

classes, especially in the context of agricultural parcel segmentation, where distinguishing between 

cultivated and non-cultivated areas is critical.  
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Actual class/ predicted 

class 

Is Parcel Not 

Parcel 

Is Parcel TP FN 

Not Parcel FP TN 

Table 2 : Confusion matrix four entries (TP, FN, FP, and TN) for binary classification 

It reveals how well the model classified the pixels of each class, providing insight into the 

types of errors it made. A perfect model would result in high values for TP and TN, and low values 

for FP and FN. However, due to the complexity of the task and the potential for class imbalances, 

it is important to analyze the model's performance through derived metrics, rather than relying on 

raw accuracy alone. 

Accuracy, defined as the ratio of correct predictions to total predictions, is a 

straightforward metric to assess overall model performance. It is computed as: 

 

However, accuracy alone can be misleading, especially in cases of class imbalance, 

where a model could achieve high accuracy by favoring the majority class. To gain a deeper 

understanding of the model's performance, we also looked at precision and recall. Precision, 

which focuses on the correctness of positive predictions, is defined as: 

 

On the other hand, recall measures the model’s ability to identify all relevant positive 

instances (i.e., cultivated parcels) and is defined as: 

 

The trade-off between precision and recall is particularly important when dealing with 

segmentation tasks, as maximizing one often comes at the expense of the other. To strike a 

balance between precision and recall, we computed the F1 score, which is the harmonic mean of 
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the two metrics. A high F1 score suggests that the model is not just good at identifying positive 

instances but also at minimizing false positives. 

 

Given the spatial nature of the segmentation task, Intersection over Union (IoU) is 

another crucial metric for evaluating segmentation models. IoU measures the overlap between 

the predicted and ground truth regions, with higher values indicating better segmentation. This 

metric is particularly valuable in remote sensing applications, where pixel-level accuracy is 

critical. The IoU is calculated as: 

 

Evaluating the effectiveness of the proposed U-Net model is crucial for validating our 

design choices and comparing its performance against other segmentation models. Through a 

combination of established metrics, we assessed how accurately our model segments agricultural 

parcels in satellite imagery. Our primary evaluation metrics included Mean Intersection over 

Union (mIoU). mIoU was one of the central metrics in our evaluation framework, as it provides a 

reliable pixel-wise assessment of model accuracy. mIoU is calculated as the average IoU across 

all classes in the dataset. For our dataset with multiple images, the average IoU across all images, 

mIoU, was used to quantify the segmentation accuracy. This metric reflects the model’s ability to 

capture relevant details within the segmented regions, and higher values indicate better alignment 

between predictions and ground truth. 

Through these comprehensive metrics and loss functions, we rigorously evaluated the 

model’s performance, guiding its refinement for improved segmentation accuracy. In the next 

steps, we benchmarked our model against existing approaches, using these evaluation metrics to 

validate its effectiveness and assess how it stands in relation to previous work in similar projects.
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Chapter 3: Results 

3.1 Model Performance 

To determine the best-performing model from all these cases, we need to evaluate the 

models based on the following key metrics for model testing: 

1. F1-score: A balanced measure of Precision and Recall, prioritizing models with 

higher F1-scores. 

2. Precision: Measures how many of the predicted positives are actually correct. 

3. Recall: Measures how many of the actual positives were correctly predicted. 

4. IoU: Measures how well the predicted and true masks overlap, indicating spatial 

accuracy. 

Case Backbone Threshold Test F1-score Test Precision Test Recall 
Case 1: RGB Resnet 34 0.4 0.9741 0.9719 0.9768 
Case 1: RGB Resnet 34 0.5 0.9762 0.9748 0.9777 
Case 1: RGB Resnet 34 0.75 0.9685 0.9651 0.9731 
Case 1: RGB Resnet 50 0.4 0.9886 0.9884 0.9888 
Case 1: RGB Resnet 50 0.5 0.9887 0.9888 0.9885 
Case 1: RGB Resnet 50 0.75 0.9878 0.987 0.9887 
Case 1: RGB Inception-ResNet-v2 0.4 0.2861 0.2005 0.4993 
Case 1: RGB Inception-ResNet-v2 0.5 0.2861 0.2005 0.4993 
Case 1: RGB Inception-ResNet-v2 0.75 0.2862 0.2005 0.4994 
Case 1: RGB Efficientnet B4 0.4 0.2841 0.2103 0.4938 
Case 1: RGB Efficientnet B4 0.5 0.2841 0.2103 0.4938 
Case 1: RGB Efficientnet B4 0.75 0.2841 0.2103 0.4938 
Case 2: NRG Resnet 34 0.4 0.9879 0.9877 0.9881 
Case 2: NRG Resnet 34 0.5 0.988 0.9882 0.9878 
Case 2: NRG Resnet 34 0.75 0.9871 0.9862 0.9881 
Case 2: NRG Resnet 50 0.4 0.9897 0.9896 0.9899 
Case 2: NRG Resnet 50 0.5 0.9897 0.9899 0.9896 
Case 2: NRG Resnet 50 0.75 0.9891 0.9885 0.9898 
Case 2: NRG Inception-ResNet-v2 0.4 0.2865 0.3858 0.4999 
Case 2: NRG Inception-ResNet-v2 0.5 0.2865 0.3858 0.4999 
Case 2: NRG Inception-ResNet-v2 0.75 0.2865 0.4031 0.4999 
Case 2: NRG Efficientnet B4 0.4 0.2858 0.2003 0.4984 
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Case 2: NRG Efficientnet B4 0.5 0.2858 0.2003 0.4984 
Case 2: NRG Efficientnet B4 0.75 0.2858 0.2003 0.4984 
Case 3: NRGB Resnet 34 0.4 0.9889 0.9889 0.9889 
Case 3: NRGB Resnet 34 0.5 0.9889 0.9892 0.9885 
Case 3: NRGB Resnet 34 0.75 0.9848 0.9852 0.9844 
Case 3: NRGB Resnet 50 0.4 0.9845 0.9855 0.9835 
Case 3: NRGB Resnet 50 0.5 0.9845 0.9855 0.9835 
Case 3: NRGB Resnet 50 0.75 0.9845 0.984 0.985 
Case 3: NRGB Inception-ResNet-v2 0.4 0.3119 0.483 0.4978 
Case 3: NRGB Inception-ResNet-v2 0.5 0.3117 0.4808 0.4975 
Case 3: NRGB Inception-ResNet-v2 0.75 0.3121 0.4863 0.4982 
Case 3: NRGB Efficientnet B4 0.4 0.2864 0.414 0.5 
Case 3: NRGB Efficientnet B4 0.5 0.2864 0.414 0.5 
Case 3: NRGB Efficientnet B4 0.75 0.2858 0.2013 0.4985 

Table 4:  Results for 12 experiments 

Based on the analysis of the reported metrics across different models, we can conclude that 

Case 2 with ResNet-50 and a threshold of 0.5 as the best configuration is based on several 

performance factors. First, in this setup, the model achieved the highest F1-score of 0.9897, 

indicating a near-optimal balance between precision and recall, ensuring accurate and complete 

parcel segmentation. The precision and recall values are nearly equal, which reflects the model's 

ability to accurately identify true positives (parcels) without misclassifying non-parcel pixels as 

parcels. This balance is crucial for semantic segmentation tasks, as it avoids common trade-offs 

between under-segmentation (missed parcels) and over-segmentation (false positives). 

Additionally, the IoU score of 0.9797 is among the highest in the experiments, indicating 

a strong overlap between predicted and actual parcel regions. This metric is especially important 

in segmentation tasks, as it measures the extent to which the model’s predictions align with the 

true parcel boundaries. In practice, a high IoU means the model can generate clear, well-defined 

parcel outlines, which is essential for applications requiring precise delineation. 

The NRG data in Case 2 includes the near-infrared (NIR) band along with the red and green 

bands, providing additional spectral information that enhances the model’s ability to differentiate 

between parcel and non-parcel areas. NIR data is often highly useful in identifying vegetation and 
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land features, as it enhances contrast between vegetation and non-vegetation, which is likely 

beneficial for parcel segmentation. ResNet-50’s architecture appears to effectively leverage this 

information, showing improved performance over simpler RGB data (Case 1) or more complex 

NRGB data (Case 3). This suggests that the NRG configuration strikes a balance between 

sufficient spectral complexity for enhanced segmentation and manageable data processing for the 

model. 

 

Figure 20: IOU evaluation resalts  

 

Finally, the choice of a 0.5 threshold is ideal here because it balances sensitivity (recall) 

and specificity (precision) without biasing too strongly toward one or the other. Lower thresholds, 

such as 0.4, tend to increase recall slightly but may include more false positives, while higher 

thresholds, such as 0.75, may overly limit detection, reducing recall. At a 0.5 threshold, ResNet-

50 with NRG data achieves an optimal mix of high precision, recall, F1-score, and IoU, making 

this combination the most effective and reliable for parcel segmentation in this experimental setup, 

However, if you are limited to RGB data, Case 1: RGB with ResNet 50 at a 0.5 threshold would 

be a solid alternative. 

In addition to all the factors listed above, time consumption affects many aspects of AI, 

from operational efficiency and cost management to user satisfaction and environmental impact. 

Optimizing time consumption not only makes an AI model more viable and scalable but also 

enhances its overall value across real-time applications, cost-sensitive environments, and user-

centric services. 

More time consumption for the model leads to greater usage of computational resources, 

such as CPUs, GPUs, memory, and storage. This may necessitate more powerful hardware, which 

will be costly, especially in cloud computing environments where resource usage is billed hourly. 
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Models that consume more time require more cloud or server time, increasing expenses 

significantly. 

Case number Test number  Backbone Time taken 
per step s/sec 

Steps per 
epoch s/epoch 

time for 1 
epoch sec 

1 1 ResNet-34 13 51 663 

2 ResNet-50 19 51 969 

3 Inception ResNet 27 51 1377 

4 Efficient Net b4 19 51 969 

2 5 ResNet-34 13 51 663 

6 ResNet-50 19 51 969 

7 Inception ResNet 27 51 1377 

8 Efficient Net b4 19 51 969 

3 9 ResNer-34 13 51 663 

10 ResNer-50 19 51 969 

11 Inception ResNet 27 51 1377 

12 Efficient Net b4 19 51 969 

Table 3: Consumption of time for each experiment 

 

 

Figure 21:Chart showing time consumption for 1 epoch with different backbones. 
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Based on the above analysis, ResNet-50 is the best choice among these backbone options. 

However, ResNet-50 takes about 46% more time per epoch than ResNet-34, which is expected, as 

ResNet-50 has 50 layers and a larger number of parameters compared to ResNet-34. While 

ResNet-101 might provide higher accuracy, ResNet-50 is sufficient for this project since pixel 

classification for parcels is simpler than other tasks that require more details and deeper backbones. 

In short, it’s best to select the simplest backbone that achieves the target accuracy while 

meeting the time constraints of your application. This approach maximizes efficiency and 

maintains a good balance between accuracy and computational demand, ensuring the model is both 

effective and practical. 
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Figure 22: show image, mask and predicted mask in case 2 (NGB bands) with 

threshold 0.4. 
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Figure 23: Showing image, mask and predicted mask in case 2 (NGB bands) with 

threshold 0.5. 
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Figure 24: Showing image, mask and predicted mask in case 2 (NGB bands) with 

threshold 0.7. 
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3.2 Segmentation mask result and digitized area comparison 

This project focuses on developing a robust deep-learning model for semantic 

segmentation of satellite imagery, aiming to classify pixels as parcels or non-parcels. An essential 

part of this work involves validating the model's performance through a detailed comparison 

between its output—the segmentation masks—and manually digitized parcel boundaries, which 

act as the ground truth. 

Segmentation masks visually represent the model’s understanding of the spatial layout of 

parcels, while manually digitized areas, created with human expertise, provide a precise reference. 

Comparing these datasets allows for a quantitative and qualitative assessment of the model's ability 

to delineate parcel boundaries accurately, even in challenging scenarios such as overlapping or 

closely adjacent parcels. 

This analysis not only highlights the model’s strengths but also identifies areas requiring 

refinement, such as improving boundary precision or resolving ambiguities in complex landscapes. 

The results are crucial for optimizing the model to achieve high accuracy and reliability, which are 

vital for real-world applications like agricultural monitoring, land use planning, and resource 

management. By bridging the gap between automated segmentation and manual digitization, this 

comparison ensures the model is aligned with practical needs and capable of supporting informed 

decision-making in various domains. 

Based on the results above, we tested this deep learning model using satellite imagery. 

Manual digitization of agricultural parcels was performed using the ArcGIS Pro editing tool in the 

village of Saadnayel, near Zahle, covering an area of approximately 707,500 m² 
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Figure 25: Digitized area for parcels in SAADNAYEL village. 

 

Figure 26: Model results parcels segmentation in SAADNAYEL village. 
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Segmentation 

type 

Number of 

parcels 

Total parcels 

area m2 

% of 

area 

 U-Net model 73 693,662.80 99.59 

manual 

digitizing 

48 696,514.25 

Table 4 : show the different between different parcels segmentation methods type in 

Saadnale village. 
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3.3 Model Integration 

Developing an application that allows users to input satellite imagery as RGB or NRG form 

and receive parcel segmentation as a shapefile (*.shp) provides numerous benefits across various 

fields. The application automates the process of identifying and delineating parcels, significantly 

reducing the time and effort required compared to traditional manual digitization methods. This 

not only improves efficiency but also ensures consistent and accurate results, minimizing errors 

and delivering high-quality outputs suitable for further analysis. 

By offering a user-friendly interface, the application makes it easy for non-experts to 

generate professional-grade GIS data without the need for advanced technical skills. The shapefile 

output format is widely compatible with popular GIS platforms like ArcGIS, enabling seamless 

integration into workflows for agricultural monitoring, urban planning, and land management. 

Additionally, the application is highly flexible, capable of handling satellite imagery for areas of 

varying sizes, from small villages to larger regions, making it suitable for a wide range of use 

cases. 

The ability to quickly and accurately generate parcel boundaries supports informed 

decision-making in areas such as crop monitoring, yield estimation, and land-use planning, 

ultimately contributing to better resource allocation and sustainable practices. Furthermore, by 

automating parcel segmentation, the application reduces reliance on costly manual digitization 

processes, offering a cost-effective solution for small organizations, farmers, and local 

governments. 

This innovation also promotes digital transformation by integrating advanced AI 

technology into practical applications, fostering innovation and efficiency in agriculture, land 

management, and environmental conservation. By bridging the gap between complex AI models 

and end-user needs, the application ensures that satellite imagery analysis becomes more 

accessible and actionable for a broader audience. 
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Figure 22: Application interface 

 

Figure 23: show study area, parcels  segmentation (RGB),parcels segmentation 

(NRG) respectively using Application. 
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3.4 Post-prediction processing 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The workflow begins with applying a deep learning model to satellite imagery to perform 

semantic segmentation and generate parcel boundaries. The resulting output is then exported and 

inserted into ArcGIS Pro as a shapefile (.shp) for further geospatial analysis. Parcels with areas 

below a predefined threshold are then selected and removed to filter out insignificant regions. To 

refine the boundaries, the Regularize Building Footprint tool is applied with a specific tolerance, 

ensuring smoother and more realistic parcel outlines. Finally, the Eliminate Polygon tool is used 

to fill and dissolve holes within parcels, creating contiguous and clean parcel shapes for subsequent 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Post prediction workflow. 
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Chapter 4: Results Discussion and Interpretation 

A new approach to parcel segmentation using deep learning leverages advanced neural 

networks, such as convolutional neural networks (CNNs) and their variants, to automate the 

extraction of parcel boundaries from satellite images with remarkable precision. Unlike traditional 

methods that rely on manual digitization or rule-based algorithms, deep learning models can learn 

complex spatial patterns and features directly from large datasets. These models are trained on 

labeled satellite imagery, where the pixels representing parcels are annotated, enabling the network 

to recognize intricate details such as the shape, size, and boundaries of parcels in diverse terrains. 

This innovative approach offers several advantages, including the ability to handle large 

volumes of satellite imagery quickly and accurately, even in challenging conditions such as 

varying lighting, cloud cover, or irregular parcel shapes. Additionally, deep learning models are 

capable of learning from vast amounts of data, improving their accuracy over time and adapting 

to new environments. By automating parcel delineation, deep learning techniques reduce the need 

for manual intervention, lower the costs associated with traditional mapping, and provide scalable 

solutions for monitoring land use, agricultural practices, and urban planning. This represents a 

significant advancement in remote sensing applications, enabling more efficient and accurate 

analyses that are crucial for decision-making in agriculture, land management, and environmental 

conservation 

In our case, we found that U-Net is the most effective deep learning architecture for parcel 

segmentation using pixel classification, with a ResNet-50 backbone. This conclusion was drawn 

after analyzing all the results from previous experiments using NRG and RGB satellite image band 

combinations, achieving accuracy rates of 0.9896 and 0.9888, respectively, which are excellent 

results. However, during the testing phase, we identified some limitations with the model. These 

limitations are expected, as the model was trained on data from one area (Zahle), while the testing 

phase was conducted in a different area, which featured varying parcel shapes and colors. To 

address this issue, the training data should be sourced from diverse zones to improve 

generalization. We will discuss these limitations in more detail in another chapter. 
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4.1 Limitations  
 

The challenge lies in performing semantic segmentation on such a limited dataset since any 

deep learning model requires a large dataset to be able to learn, and provide better results. 

Moreover, the variety and complexity of spatial features such as complex parcels shape in the 

satellite imagery, make it very hard for the model to detect some spatial features such as farmer 

parcels. Therefore, providing a large number of masked satellite images for the same dataset is 

crucial to get more accurate results. The large annotated and masked satellite dataset has to be for 

various areas and geographic regions that will help the model to learn, predict and provide better 

results for the semantic segmentation of complex spatial features.  

Furthermore, the dataset's satellite images are manually masked and annotated by humans, 

which has resulted in wrong masks and segmentation for certain classes in some images. This 

misleading data can negatively impact the model's learning process, potentially affecting the 

quality of its predictions. The presence of errors in segmenting some spatial features in the dataset 

may lead the model to incorrectly predict some spatial features from satellite images. Therefore, it 

is recommended to generate masked images automatically by developing a script or software that 

can generate masked images for each detail of spatial feature in the satellite image without the 

need for manual intervention. 

In my case I choose the best model which was in case2 ResNet-50 with NRG data achieves 

an optimal mix of high precision, recall, F1-score, and IoU (experiment 6), when the model use to 

test on other area there was some limitation and errors. 

The primary challenges in this project included: 

• Irregular Parcel Shapes: Parcels vary widely in shape and size, making it difficult for the 

model to generalize across different parcel boundaries and accurately detect each unique 

area. These irregular shapes complicate the pixel-level classification, especially when 

parcels have highly varied, non-uniform edges. 

• Closely Positioned Parcels: When parcels are situated close together, distinguishing them 

becomes challenging. Narrow or low-contrast boundaries often as thin as one to two meters 

separate parcels, sometimes with small roads or paths that are not visually distinct enough 
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to serve as clear dividers. This lack of separation often leads the model to classify adjacent 

parcels as a single unit, reducing accuracy in boundary detection. 

• Variability in Contrast and Brightness: Differences in lighting conditions, shadows, and 

image brightness across parcels introduce variability that can confuse the model. This 

inconsistency in image quality affects the model’s ability to uniformly detect and classify 

parcels, as some areas may appear lighter or darker than expected, even within the same 

scene. 

• Type of Separation Between Parcels: Parcels are often separated by different types of 

surfaces, such as asphalt or dirt roads. These variations add another layer of complexity, as 

the model may need to learn to differentiate between a boundary and a parcel, even when 

the dividing surface is less distinct, like a dirt road. 

• Small Parcel Sizes: Small parcels are especially challenging to detect as they may occupy 

only a few pixels in the image. This can make it difficult for the model to distinguish small 

parcels from surrounding land, especially if they are clustered together or have minimal 

visual contrast with their surroundings. 

• Complex Backgrounds: The areas surrounding parcels may contain complex features 

such as trees, water bodies, or structures, which can add noise to the images. The presence 

of similar textures or colors in the background can interfere with the model's ability to 

clearly detect the boundaries of parcels. 

• Seasonal and Temporal Variations: Satellite or aerial images are often taken at different 

times of the year, meaning that parcels may look different based on seasonal changes. For 

instance, vegetation density, color, or cover changes across seasons can affect the 

appearance of parcels, leading to misclassification if the model has not been trained on a 

diverse temporal dataset. 

• Cloud Cover and Shadows: Shadows from clouds, buildings, or trees can obscure parts 

of parcels, making it hard for the model to correctly classify every pixel. Cloud cover can 

also result in varying brightness across the image, causing some parcel areas to appear 

darker or lighter than they actually are. 
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• Resolution Limitations: Depending on the image resolution, small details such as narrow 

roads or subtle boundaries between parcels might be blurred or lost. Lower-resolution 

images may make it difficult to detect parcel edges, especially when the distinction 

between parcels relies on fine details. 

• Homogeneity Within Parcel Areas: Some parcels, especially agricultural plots, may have 

uniform textures or colors across large areas, which can make it hard for the model to 

differentiate these regions from other similar-looking parcels. 

• Presence of Non-Parcels within Parcel Boundaries: Some parcels might include non-

parcel elements, like structures, trees, or equipment. These features can complicate 

classification as the model may interpret them as separate entities or fail to classify the 

entire area correctly as a parcel. 

Each of these factors adds to the complexity of developing a model capable of accurate 

and consistent parcel detection, particularly when the distinctions between parcels are subtle 

or not visually prominent. Addressing these challenges may involve fine-tuning model 

parameters, enhancing boundary detection techniques, or introducing pre-processing steps to 

normalize contrast and improve image quality for more consistent results.   
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Chapter 5: Conclusion and Future work 

5.1 Summary of Findings 

This thesis addressed the topic of “Semantic Segmentation for Parcels,” aiming to 

accurately identify parcel boundaries within satellite imagery using deep learning models. By 

applying the U-Net architecture a popular model for semantic segmentation tasks due to its 

encoder-decoder structure we explored its effectiveness with different backbone networks and 

spectral band combinations on a dataset of satellite imagery. The goal was to classify each pixel 

as belonging to a parcel or non-parcel area, a critical task in fields such as land management, 

precision agriculture, and environmental monitoring. 

A total of 12 experiments were conducted using U-Net with various backbone 

configurations, including ResNet-34, ResNet-50, Inception ResNet, and EfficientNet-B4, and with 

different spectral band inputs: RGB (Red, Green, Blue), NGB (Near-infrared, Green, Blue), and 

NRGB (Near-infrared, Red, Green, Blue). The choice of different backbones allowed us to assess 

the impact of network complexity and feature extraction capability on segmentation accuracy. 

Each backbone network brings unique attributes ResNet models, for example, have skip 

connections that help in preserving spatial information, while EfficientNet-B4 offers a more 

computationally efficient structure that still maintains strong accuracy. 

Analyzing the outcomes based on performance metrics, including F1-score and 

Intersection over Union (IoU), revealed that the NGB band combination with the ResNet-50 

backbone achieved the highest segmentation accuracy. This specific configuration produced an 

F1-score of 0.9897 and an IoU score of 0.9797, indicating an exceptionally high level of agreement 

between the predicted parcel regions and the actual parcel boundaries. These metrics suggest a 

robust model performance, as the high IoU score reflects the model’s effectiveness in predicting 

regions that closely match the ground truth parcel areas, while the F1-score indicates a strong 

balance between precision and recall. 

The results of this study underscore the potential of combining multispectral data with deep 

learning architectures for precise parcel segmentation. The success of the NGB ResNet-50 model 

configuration, in particular, suggests that the inclusion of the near-infrared band is beneficial for 

distinguishing vegetation and land cover, improving the model’s ability to delineate parcel 
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boundaries. The findings demonstrate that this model outperformed other configurations, making 

it an optimal choice for accurate and efficient parcel segmentation in this study. The insights gained 

from these experiments can guide future research and practical applications in leveraging deep 

learning for spatial analysis and land use classification using satellite imagery. 

5.2 Future Work 

This thesis can be extended to explore applications beyond parcel segmentation by 

incorporating advanced analyses tailored to agriculture, land management, and environmental 

monitoring. For instance, adapting the model for crop type classification could enable the 

identification of crops within each detected parcel using multispectral or hyperspectral data, 

offering critical insights into crop distributions for better resource allocation. Similarly, integrating 

temporal satellite imagery and weather data could support crop yield prediction, helping estimate 

growth and health trends over a season, which would benefit food security and resource planning. 

By combining parcel maps with vegetation indices and soil moisture data, water consumption and 

irrigation needs could be estimated, promoting sustainable agricultural practices through 

optimized water usage. Additionally, the model could assess soil health and detect nutrient 

deficiencies by incorporating data on soil conditions, enabling targeted fertilization for improved 

productivity. 

Future developments could also focus on detecting crop stress and disease using advanced 

imagery to identify early signs of pest infestations or nutrient issues, allowing timely interventions. 

Beyond agriculture, the model could estimate carbon sequestration potential and monitor 

environmental impacts, aiding climate change mitigation. Applications in assessing soil erosion 

risks and land degradation could further enhance land management and conservation efforts. 

Temporal analysis of crop rotation patterns and land use changes could provide insights into 

sustainable practices and urbanization trends. Practical implementations include integrating these 

advancements into decision support systems for farmers and policymakers, offering actionable 

insights on crop health, water needs, and soil conditions. Finally, developing a real-time 

monitoring platform could provide stakeholders with live updates on crop status and land 

conditions, enabling timely, data-driven decisions to optimize agricultural productivity and 

sustainability. 
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Future research in this area holds significant potential for advancing both theoretical 

understanding and practical applications. Building on the foundational work of parcel 

segmentation, future studies could explore innovative methodologies to address unresolved 

challenges, such as enhancing model performance in complex or diverse geographic regions, 

integrating temporal and environmental data for dynamic analysis, and scaling solutions for large-

scale implementation. Beyond segmentation, expanding the scope to include applications like crop 

monitoring, resource optimization, and environmental impact assessment would provide a 

multidisciplinary approach, connecting artificial intelligence with pressing global issues such as 

food security, water conservation, and climate change. The exploration of novel data sources, 

advanced deep learning techniques, and their integration into decision-support systems could open 

pathways for transformative solutions, making future research in this domain not only 

academically enriching but also socially impactful. 
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